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High-temperature deformation of two phase structures

By J. H. GiTTus
United Kingdom Atomic Energy Authority, The Reactor Group,
Spring fields, Salwick, Preston, Lancashire, U.K.
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Some of the ways in which two phase crystalline substances deform are reviewed. By
the addition of a small amount of a finely dispersed second phase the resistance of a pure
material to deformation can be spectacularly increased. The effect is quite dispro-
portionate to the amount of second phase added. It stems from the fact that crystal
dislocations have to increase in length to circumvent the particles and the energy
needed to produce this effect must be supplied by the external machine causing
deformation.

If equal amounts of equally deformable phases are present (as in certain alloys of
eutectic or eutectoid composition) then the material has a low resistance to deforma-
tion but a very high ductility: the phenomenon of superplasticity. Deformation now
occurs by sliding at the interphase boundaries (i.p.bs). Superdislocations whose glide
causes this sliding are effectively trapped in the boundary — a condition of thermo-
dynamic equilibrium which (it is shown) gives rise to the observed deformation
properties.

Athigher deformation rates dislocations appearin the grains (particles) and may form
into cells. They are not, however, trapped in the cell boundaries and are observed to
produce strain by traversing the cells. The aggregate now exhibits the same deforma-
tion as the cells of which it is composed. The cell size is that which minimizes the free
energy for a given rate of deformation and the ductility is high, but not so high as that
produced in the superplastic state.

A new mechanism of deformation appears if transformation continues during
straining. Large, self-cancelling internal stresses and strains occur and the external
strain rate polarizes the latter, producing external strain. The external strain rate
bears the same proportionality to the external stress as does the internal strain rate
to the internal stress. An analogy is provided by irradiation creep where crystalliza-
tion of self-interstitials created by bombardment occurs continuously from the super-
saturated solid solution. Here the rate of transformation and the internal stress have
actually been measured and the predicted creep characteristics correlate well with in-
pile creep data.
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INTRODUCTION

Much of the existing fabric of our knowledge, both theoretical and experimental, about the
deformation of crystalline materials derives from pure substances. By contrast, many commercial
alloys and naturally occurring minerals comprise two or more phases. In this paper I review
some of the modes of deformation for two phase materials paying special attention to areas

SOCIETY

where recent advances in understanding have occurred.

The simplest case might be thought to be that in which a very small amount of one of the
phases is present and so we shall start with this. In the event, we shall see that despite its superficial
simplicity this case has many interesting and unexpected features, most of them stemming
from the properties of the crystal lattice.
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122 J. H. GITTUS

DISPERSION HARDENING

The simplest hypothesis about the effect of a second phase upon deformability is that Einstein’s
(1911) equation would apply:

me = 7(1+2.5Cp), (1)

where C), is the volume fraction of dispersed second-phase particles and 7 is the viscosity of the

medium in which the particles are dispersed. This equation predicts that the viscosity, 7., of a

dilute suspension is a linear function of the amount of second phase which is dispersed. As C,

approaches zero, the effect of the dispersed phase on viscosity becomes vanishingly small.

particle

dislocation

Ficure 1. Dislocation held up by dispersed particles and subject to the external stress (o), a friction-
stress due to the particles (o) and a stress due to neighbouring dislocations (ub/2nr,).

Dilute suspensions of particles in liquids obey equation (1) quite well. However, dispersion-
strengthened crystalline materials do not seem to obey it at all. For example, consider the case
of silver containing a dispersion of fine alumina particles (Oguchi, Oikawa & Karashima
1974): here the addition of only 0.05 %, of the dispersed particles (i.e. C, = 5 x 10~%) was enough
to introduce a threshold stress estimated by Evans & Knowles (1976) to be 29 MPa. Below this
stress deformation occurred very slowly. By contrast equation (1) would predict a negligible
effect of such a small concentration of particles upon deformability. The reason for this difference
is that, ina fluid, flow will occur around any small cluster of atoms whose deformation is impeded
by a particle, since the flowing atoms are not on a permanent lattice. By contrast, in a crystal,
the atoms are constrained to remain on their lattice sites by large interatomic forces. A particle
which hinders deformation in one part of the crystal therefore prevents movements of contiguous
regions too.

From an analysis of the interaction between particles and dislocations in crystalline materials
the theoretical equation for the creep of dispersion strengthened crystalline materials has been
derived (see Gittus 19754).

Thus a dislocation is subjected to the stress (= ub/2nr,) due to its neighbours and to stress o
due to an externally applied force (figure 1). If the specimen contains a dispersion of impenetrable
obstacles then the condition for the dislocation to glide is that the difference between the external
stress and the internal stress due to the other dislocations must equal or exceed a friction stress o

o —ubl2nry = (pb[xL = o).

Here L is the distance between adjacent particles, # is the shear modulus, 74 is the spacing between
adjacent network dislocations (the dislocation density p then equals 1/r2), b is the Burgers vector
and x is a factor of order unity whose exact magnitude depends on the details of the mechanism
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DEFORMATION OF TWO PHASE STRUGTURES 123

whereby the dislocation penetrates the array of dispersed particles (Brown & Ham 1971).
Following the lines of the analysis detailed in previous papers (Gittus 19744, b) then the steady-

state creep rate (€) should, theoretically, be
Dyub (o b

¢ = (8mhey) S (ﬁ—x—L)as (2)

¢; is the jog concentration, D, is the volume self-diffusion coefficient at temperature 7°'(K) and
k is Boltzmann’s constant.

/

l‘/\/\,/\-/lfv-

Ficure 2. Brown & Ham’s (1971) model of a dislocation surmounting a cubic particle. The glide
plane is abed. As the dislocation moves from ad to bc, additional line length must be created.

o
/ /’ Sarticle -7'-" glide—plane

If the material contains no dispersed particles, then equation (2) reduces to that for a pure
material developed in the earlier work (Gittus 1974 @), as it should. The condition for creep to
occur is that the external stress should exceed ub/xL. The dispersion-strengthened material
creep-characteristics are in fact simply those of a pure material subjected to a smaller stress:

é(disp, o) = é(mat, o —o0,). (3)
In equation (3), é(mat, o—o0,) is the creep rate of the matrix material in the absence of a
strengthening dispersion and under an external stress of magnitude o — o; and é(disp, o) is the
creep rate of the disperson-strengthened material at a stress . Equation (3) offers us an alter-
native method of estimating the creep resistance of a dispersion strengthened material if we have
creep data for the pure matrix: in the absence of such data we use equation (2).

As an example of the absolute magnitude predicted by equations (2) and (3) we consider the
dispersion-strengthened material of Hansen & Clauer (1973) at 400 °C (0.727},)).

The following equation is taken for the jog concentration (Gittus 19744):

¢; = exp (—pub®/8nkT). (4)

Figure 2 shows how a dislocation can surmount a particle by climb-plus-glide. Climb occurs

most readily at high temperatures and facilitates particle bypassing. Following Brown & Ham

(19771) we can show that the following approximations are, theoretically, valid:
AT, < T<Tyix= 2T/Tm;}

5
3T, > Tix=1. )
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124 J. H. GITTUS

Then using the values of the various parameters of equations (2), (3) and (4) collected together
in Table 1 of Ashby’s (19724) paper on deformation maps we find that for o = 28.76 MPa and
T'= 673K with b/xL = 1.36 x 103, equation (2) gives a predicted steady-state creep rate of
5.8 x 10785~ while equation (3) gives the almost identical value of 4.1 x 10~6s~1, We note in
passing that at this temperature and stress the theory predicts the creep rate of the pure alu-
minium matrix with high accuracy. Comparison with Hansen & Clauer’s data then shows that

the ‘theoretical material® has at 400 °C (673K) the creep rate which the real material would
exhibit at about 440 °C.

~ 5001+
g
B
= 3001
&
< -
100 L1 1 ! 1 1 | ) T
1 1.2 14 1.6 1.8 2

olo,

Ficure 3. Theoretical effect of o/oy upon the apparent activation
energy (Q.,) in the creep-equation (Al-Al,O, at 673 K).

Apparent activation energies

An empirical equation attributed to Nutting and Scott-Blair which is often used (Gittus
1964) to fit dislocation creep data has the following form:

¢ = Ao™exp[ — Qupp/RT1]. (6)

In estimating the value of @,,, in equation (6) by the temperature-cycling method it is usual to
assume that @,,,, and n are both independent of temperature and stress so that we can calculate
Qupp by differentiating equation (6) with both @,,,, and z assumed constant:

Qupp = —Rd (Iné)/d(T). (7)

Now, it is in fact incorrect, according to the theoretical equation for the creep of a dispersion
strengthened alloy (equation (2)), to assume that Q,,, and » are constants. If we differentiate
equation (2) we can predict the value of @,,, which will be produced if the results of a tem-
perature-cycling experiment are used to solve equation (6):
1—
= Qupp = — (@y+@Q;) + RT+2RK, T2—3RT———KLT, (8)
oloy—1
Here @, is the activation energy for volume self-diffusion and @, the activation energy for thermal
jog-formation. Clearly the apparent activation energy, @,,,, depends on both the applied stress
and on the mean temperature. Here
Q; = nRb3[k8n (9)
and dp/dT = K, p. (10)

Using these equations together with data for aluminium taken from Ashby’s (19724) Table 1
for T'= 673 K we find that (@, + ;) = 130k]J/mol while at this temperature K, = — 5.4 x 104
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DEFORMATION OF TWO PHASE STRUCTURES 125

From equation (5) we have x = 1.44 so we can calculate a value of @,,, for the dispersion-
strengthened material of Hansen & Clauer (1973), using the parameter values of the previous
section. Substituting these values into equation (8) we find that the apparent activation energy
at 400 °C and a stress o of 28.76 MPa should, theoretically, be 585k]/mol: this is the value which
Hansen & Clauer calculated from their data for a stress of 27.68 MPa and temperatures in the
range 400-500 °C.. Figure 3 shows the general effect of stress on @,,,.

160
120

n 80

40

olo,

Ficure 4. Theoretical effect of the ratio of applied stress to threshold-stress
(o]o) upon the exponent of stress (n) in the creep-equation.

According to equation (8), the apparent activation energy should fall as the value of the
externally applied stress is increased. This is what McLauchlin (1971) found in his studies of a
stainless steel strengthened by a dispersion of NbC. McLauchlin’s results also exhibit the high
levels of apparent activation energy which the theory predicts. A high activation energy is found
also in the results of Gulden & Shyne (1963) while Russell, Ham, Silcock & Willoughby (1968)
found that in their experiments the apparent activation energy has the kind of stress dependence
which our theory would have led us to expect. Similarly, Vickers & Greenfield (1968) report
that in the case of Mg-MgO the apparent activation energy for steady-state creep is about
420k]J/mol while that for self diffusion is only 135k]J/mol. They review work on Al-Al,O,
which like the studies of Hansen & Clauer, yields activation energies (in the range 630-1260
kJ/mol) much higher than the self diffusion value.

Stress-sensitivities

Differentiating equation (6) with respect to stress we obtain

n=d/(In€)/d(Inc), (11)
which with equation (2) gives n = [3/(c—ublxL)] o, (12)
ie. = 3/(1 —o,/0), (18)
and so n—>00 as o->0, n—>3 as o->0. (14)

Evidently the limiting behaviour summarized in relations (14) explains why, with increasing
external stress, the value of n falls from the near-infinite values at low stresses towards an asymp-
totic value (see figure 4) (n = 3). A numerical example can be obtained by considering again
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126 J. H. GITTUS

the alumina dispersion strengthened aluminium at 400°C and a stress of 28.76 MPa (the
conditions which led, in the previous section, to a predicted activation energy of 585 kJ/mol).
Then equation (12) gives n = 78. For comparison, Hansen & Clauer (1973) found that their
data conformed to values of # ranging from 50 at 600 °C to over 100 at low stresses and 400 °C.

McLauchlin (1971) found that for his NbC-hardened stainless steel, the value of » was high
and exhibited the kind of temperature dependence which equation (12) would predict. Crossland
& Jones (1972) found that above 350 °C the stress exponent was of order 10 for Mg—-MgO.

By substituting equation (13) into equation (8) we obtain

Qapp = Qapp,o +3RT(1-K, T) (3n—1), (15)
where @y, > Qapp, o s 7> 3. This illustrates the kind of relation between z and @,,, which was
observed by McLauchlin (1971).

The conclusions which we have drawn about the values of the apparent activation energy and
the exponent of stress for dispersion-strengthened alloys are supported by most of the relevant
experimental data reviewed by Brown & Ham (1971). Support stems also from later work on a
Nimonic alloy reported by Williams & Wilshire (1973).

In this section, then, we have shown how a tiny addition of a finely dispersed second phase can
dramatically increase the deformation resistance of a pure metal or solid solution at elevated
temperature. The effect is far greater than the equivalent effect of suspending particles in a
liquid and it produces a creep rate whose sensitivity to changes in stress and temperature is not
at all what one would expect from the behaviour of a pure metal. We shall now go on to examine
what happens if the second phase, instead of being present in small amounts, is almost equal in
volume to the first phase.

SUPERPLASTICITY IN TWO PHASE STRUGTURES

The materials which exhibit what Johnson (1970) terms ‘fine-grain superplasticity’ may be
single phase but those exhibiting the highest stability during deformation coupled with the
largest extensions are more commonly multiphased. In the latter case it is frequently observed
that the two phases are present in approximately equal proportions and that they appear to
have approximately equal ductilities. Many of the superplastic alloys are therefore eutectics
or eutectoids.

In these superplastic materials, individual grains or phase particles translate large distances
relative to one another without exhibiting any large permanent changes in shape. This is
illustrated in figure 5. In their studies of superplastic deformation in the Pb-Sn eutectic, Geckinli
& Barrett (1976) used a special tensile stage in a scanning electron microscope. They photo-
graphed consecutive positions of the grains continuously during straining and it is from measure-
ments made during these experiments that figure 5 was prepared. The grains rotated up to
+ 30° from the tensile axis during the tests, often reversing the direction of their rotation during
the course of straining. The grains remained equiaxed during straining although no voids were
observed to form between them: evidently sufficient localized deformation was occurring to
maintain coherency between adjacent grains as they slid past one another.

These observations caused Geckinli & Barrett to conclude that the dominant mode of deforma-
tion during superplastic flow is grain boundary sliding with localized fluctuating vibrations
in grain shape. This view is consistent with the results of the majority of experiments in which
superplastic flow has been produced (Gittus 1975 5).
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DEFORMATION OF TWO PHASE STRUCTURES 127

There are several theories, but two have attracted the most interest. One of these, due to Ashby
& Verrall (1973) proposes that a process akin to diffusion creep occurs. It allows the grains to
make the fluctuating changes in shape that permit them to remain in contact during sliding.
In effect all that need happen is for the material from some grain corners to diffuse to adjacent
grain-faces, and vice versa. The interior of the grain does not alter in shape at all and may be
regarded as a sphere which slides relative to the other spheres (grains). At low stresses and small
grain sizes, Ashby & Verrall noted that the ability of the boundary to act as a source and sink
for point defects might become limiting. The creep rate may then depend on the density of
dislocations in the boundary. Now the Ashby & Verrall model, for the case in which the interface
reaction is nof rate controlling, leads to the prediction that the creep rate will depend on the first
power of the applied stress, whereas experimentally it usually depends on the square or the
cube. Interface-reaction control coupled with a sink-density which increases with stress, leads
to a dependence of the strain-rate on the square of the stress.

T T T T
150

100+ _
boundary orientation
with respect to
tensile axis

87%

50

separation of pair of grains/um

engineering strain

FIGURE 5. Separation of pairs of grains as a function of engineering strain. Pb-Sn eutectic. Reproduced
by permission of Dr C. R. Barrett. Initial strain rate 5 x 10~*s~1; grain size 3.5 pm.

This kind of stress dependence was in fact a characteristic of an earlier model of superplastic
flow put forward by Ball & Hutchison (1969). Their model, as they remark, is virtually the same
as one suggested earlier by Friedel (1964) to explain the fact that the activation energy for the
creep of fine grained zinc is that for grain-boundary diffusion. They suggested that at high
temperatures dislocations from the head of a pileup would climb into the boundary against
which they were piled up. Sources on the slip plane, by operating to replace the dislocations so
‘lost’, produced creep. They were led to a creep equation having the observed type of dependence
of strain-rate upon both stress and grain size. Mohamed, Shei & Langdon (1975) have examined
the Ball & Hutchison model, particularly in relation to superplasticity in the Zn-Al eutectic
and have pointed to two drawbacks: first, the model assumes that adjacent grains slide in groups
and this is not supported by direct observations in the scanning electron microscope; secondly,
the model predicts the presence of many intergranular dislocations although transmission
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128 J. H. GITTUS

electron microscopy and internal marker experiments have been interpreted to indicate that
there is very little within-grain dislocation activity during superplastic flow. Another problem
is that superplastic flow is sometimes observed to cease at a low stress and neither theory can
account for the magnitude of this ‘threshold’ stress.

Neither of the two theories then is entirely satisfactory, even for the case of superplastic flow
in a single phase alloy. In the case of a two phase alloy there are additional difficulties due to the
nature of the sliding and climb processes at interphase boundaries. We consider this matter in
the next section.

Sliding, growth and dissolution at interphase boundaries

It is, of course, established that particles of a second phase can precipitate and dissolve. In
addition processes such as ‘ripening’ are observed in which material from one particle of a second
phase diffuses to another through the intervening matrix. Again, the shape of a particle can
change, presumably by the diffusion of matter from one region to another. These mechanisms
are capable then of producing the changes in particle shape (and possibly, size) which have to
occur in order to preserve continuity at the contacting faces of particles and matrix during
superplastic flow. Aaronson, Laird & Kinsman (1970) have summarized the mechanisms of
these diffusional growth processes for precipitate crystals. The orientation relation of the pre-
cipitate lattice with respect to the matrix lattice is assumed fixed during nucleation. The structure
of the interphase boundary varies with the orientation of the boundary. Dislocation structures
appear at one or two orientations and disordered structures at all of the others. In Aaronson’s
original theory it had been assumed that both the dislocation boundaries and the disordered
boundaries had structures which closely approximated their equilibrium configurations. At
least in the case of dislocation boundaries it has since become clear that the details of the misfit
dislocation structure are often greatly dependent upon the mechanics and the kinetics of genera-
tion or introduction of misfit dislocations. The dislocation boundaries can only migrate by the
movement along their length of ledges. The narrow faces of these ledges often appear to be
disordered and so there is no structural barrier to precipitation of additional material onto them.
Similarly there is no structural barrier to the growth (migration) of the disordered boundaries.
In the ordered boundaries on the other hand, addition of a new layer of atoms will generally
alter the packing relation between the two contacting lattices, introducing a measure of disorder.
The energy needed to accomplish this is usually high. It is for this reason that precipitates are
often in the form of long plates or rods: the long dimension is a dislocation boundary which can
only thicken by the slow process of ledge-growth whereas elongation of the precipitate occurs
preferentially by the addition of atoms to regions of the boundary that are already so disordered
that the new atoms cannot raise their energy significantly.

Sliding at dislocation interphase boundaries is impeded by the same type of energy barrier. Thus
the passage of a glissile dislocation leaves in its wake a disordered structure of high energy. The
energy increase could be so high as to prohibit the glide and with it any sliding at the interphase
boundary. That is to say the threshold stress for i.p.b. sliding could be very high (Ashby 19724).
Dislocation boundaries in single phase materials can slide more easily. They do this, in most
cases, by a combination of translation and migration. Atoms are transferred across the interface
during sliding to restore the boundary structure, which would otherwise be altered by the sliding
process. In this way one of the grains grows at the expense of the other. If atoms are transferred
across the interface between two different phases, then the grain which grows does so by acquiring
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DEFORMATION OF TWO PHASE STRUCTURES 129

the wrong kind of atoms - those which constituted the other phase. Equilibrium can be restored
by the diffusional redistribution of the components but this introduces a large viscosity term
since the diffusion path is of the order of the grain size.

It is now suggested, however, that there is a mechanism of sliding available on dislocation
interphase boundaries. It involves the glide of a superdislocation in the boundary plane. Figure 6
shows what happens. The first of a pair of boundary dislocations creates disorder but the second
dislocation, when it passes along the same path, restores order once more. Nakagawa &
Weatherly (1972) have actually observed pairs of dislocations in the interface between two

in migration sliding
model (where o=p)
8 this atom would join this

perfect
perfegt matching
matching™—
2,
i.p.b.=a.p.b.
Q
Ficure 6. Interphase boundary (i.p.b.: ——-) sliding by motion of an i.p.b.~superdislocation contrasted with the

Ashby migration/sliding process. The latter involves crystallization of a-atoms on the B-lattice or their diffusion
along paths comparable in length to the grain-size: this produces a high i.p.b. viscosity. The viscosity is char-
acteristically much lower if an i.p.b. superdislocation glides in the boundary. The two partial dislocations are
then separated by a region of i.p.b. having the structure of an antiphase domain boundary (a.p.b.: ===~).

ordered lattices. The lattices were those of NigAl and NigNb in a directionally solidified eutectic
alloy. The dislocation pairs had separations of 30-40nm. They were epitaxial dislocations with
b = a2[110]y;,4; and the orientation relation between the phases at their common boundary
was (110) 1| (100) i xms (113)ng,a1] (081) nynp- What we are now suggesting is that the forma-
tion of superdislocations during deformation may be a quite general phenomenon in interphase
boundaries, even where the contacting phases do not themselves exhibit long-range order. An
interphase boundary between two pure substances (o and B) is in fact an ordered solid solution
of one phase in the other and the disordered region between the leading and the trailing com-
ponents of the superdislocation is an antiphase boundary (a.p.b.). The Burgers vector can make
any angle to the i.p.b. In figure 6, b lies in the i.p.b. If b is perpendicular to the i.p.b. then the
a.p.b. is equivalent in structure to a faulted dislocation-loop. The superdislocation now moves
by climb, vacancies diffusing through the fault to the trailing edge from the leading edge.
More generally a mixture of climb and glide will occur, the latter leading to i.p.b.-sliding.

The equilibrium width (w) of the disordered region can be calculated from a knowledge of
the elastic constants and a fault energy, I' (Gittus 19774). Thus for the case where superdis-
locations occur with separation /, we can define a long-range order parameter, S, as

S =1-wfl, (16)

9 Vol. 288. A.
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130 J. H. GITTUS

so that, when the dislocations are so close together that the partials touch, § = 0 corresponding
to the complete absence of long range order (a disordered boundary). The width of the super-
dislocation is then given, to the first approximation, by an equation essentially similar to that
(Haasen 1965) for the width of the superdislocations in an ordered solid solution:

pb?
— 17
Y= onrsE (17)
"B
B
+0
translation
to of grains
B'
BI
(@) initial state (b) intermediate state (¢) final state

FIcure 7. Unit step in the deformation process observed by Naziri ¢t al. (1973) and modelled by Ashby & Verrall
(1973). The lozenge AB A’B’ undergoes a shear of magnitude 0.55 by the moving together of A and A’ and
the simultaneous moving apart of B and B’.

As an example consider the case where the energy of the disordered boundary in the fault, I,
is100ergcm—2andletd = 2x 10~ cm, g = 5 x 10 dyncm~2, and § = 0.75. Then

w = S5nm.

The disordered region is identical in structure with the narrow face of a growth ledge and we
may in fact regard such ledges as superdislocations in which the fault and glide-planes are no
longer coparallel. Such ‘staggered’ superdislocations are certainly observed in grain-interiors.

A new theory for superplastic flow in two phase materials

In the previous section we have argued that particles of differing phases can slide relative to
one another by the movement of interfacial superdislocations. We have also remarked that a
particle can change its shape or size by the diffusion of matter to and from disordered regions
of its boundary. These principles have now been incorporated (Gittus 19774) in a model of the
superplastic flow process for two phase materials. That model is as follows:

The unit process is taken to be the grain-switching event observed during the superplastic
flow of the Zn—Al eutectoid by Naziri, Pearce, Henderson-Brown & Hale (1973). It is the unit
process which Ashby & Verrall analysed (1973) and is illustrated in figures 7-9. Figure 7 shows
what Naziri ¢f al. observed in the high-voltage microscope. Grains of the zinc-rich phase (labelled
1 and 3 in figure 75) push into the boundary between two grains of the Al-rich phase, separating
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DEFORMATION OF TWO PHASE STRUCTURES 131

the latter. The aggregate of four grains undergoes a shear of magnitude 0.55 in this process but
the final shape of each grain is the same as its starting shape. In fact (figures 7 and 8) each face
of a grain becomes a corner and each corner a face. Figure 8 also shows the length of the diffusive
paths, A, along which matter flows to accomplish the shape-changes. Itis on average 0.3 d. By con-
trast, in Herring—Nabarro diffusion creep the mean diffusion path is approximately equal to

boundary
diffusive flow

diffusive
flux

Ficurke 8. In order to maintain contact at the interphase boundaries during the grain switching process of figure 7,
material must diffuse between the points and facets of the grains. This flow occurs over short distances and
only enough material need be transported to prevent cavitation. After Ashby & Verrall (1973).

Ficure 9. Here, superimposed on the initial state (figure 7a), is shown the intermediate position of grain 2. Matter
has diffused to produce a new apex (point). In addition the centre of the grain has translated and a shear
displacement equal to the amount of this translation has occurred at the interphase boundary. After Ashby
& Verrall (1973).

half the grain diameter. Again only about one sixth of the volume of the grain has to diffuse
during the unit process in order to produce unit of strain. In the Herring—-Nabarro process on
the other hand the whole volume of a grain must suffer diffusion transport to produce unit of
strain. Figure 9 shows that the grains slide relative to one another during the unit process. It is
these shear displacements in the boundary that permit the grains to translate past each other.
Their magnitude can be seen by examining the motion of grains relative to a fixed origin, say
the centre of mass of grain 2 in figure 9.

Suppose that i.p.b. superdislocations can be generated by (for example) the expansion of
intrinsic dislocation loops under the applied stress. In the boundary the dislocations are effectively

9-2
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132 J. H. GITTUS

trapped and can only emerge into the matrix if they reassociate to form matrix dislocations of
appropriate Burgers vector. The dislocation boundary is therefore potentially a very effective
pileup of length d. The movement of dislocations in this dynamic pileup causes i.p.b. sliding
and consequently creep. It proceeds at a rate determined by the climb of the dislocations away
from the head of the pileup. They cannot generally climb out of the boundary; therefore they
must climb in it. The most likely situation is one in which the dislocations pile up at a triple
point where a dislocation boundary on which they are gliding meets two disordered boundaries
into which the dislocations then climb. For this climb to occur matter must diffuse to or from the
dislocations (diffusion coefficient = Dy, diffusion distance A).
Analysis of this model (Gittus 19774) finally yields the constitutive equation for superplastic-flow:

. d\2Dg ub (0 — 05\ 2 (b2

= u5(3) 5 () ) -
where dis the particle size, Dy the i.p.b. diffusion-coefficient and o a threshold stress. In equation
(18) the strain rate is independent of particle size except through the effect of d on the diffusion

distance A: on most models of the flow process, A = constant x d. The constant is of magnitude
0.3 in the Ashby—Verrall grain-switching model.

Structural effects

The dislocation-spacing on dislocation-boundaries theoretically decreases with increasing
stress. Hence (equation (16)) the long-range order parameter, S, will fall as the stress increases.
Now a completely disordered boundary (§ = 0) has no preferred relation to the lattices of the
contacting phases and tends to adopt a spherical shape to minimize its area (and thus to minimize
the surface energy). At the other extreme a dislocation-boundary (§—>1) follows preferred
crystallographic directions and is essentially planar. When a two phase material is stressed,
then, we expect the gradual build-up of interphase boundary superdislocations towards the
equilibrium density (and the associated fall in §) to make more -and more of the interphase
boundary adopt a curved shape. This is observed (Gittus 19755) and in the earlier literature
led to the idea that the formation of ‘bulbous’ structures was a prerequisite of superplasticity.

Source of the threshold stress, o

It is suggested (Gittus 19774) that the threshold stress, oy, is due to an interaction between
i.p.b. superdislocations and boundary-ledges. To traverse a ledged boundary the dislocations
will have to bend. Moreover there will be a change in fault energy of magnitude I'wh per inter-
section, where £ is the height of a ledge, when the narrow face of a ledge is a disordered i.p.b.
The applied stress will have to do work in order to overcome this energy in order to detach a
dislocation from a ledge. Garmong & Rhodes (1975) saw evidence of these interactions between
i.p.b. dislocations and ledges in their transmission electron microscope studies of Ni;Al-Ni;Nb
composites. The interaction was manifested both as a local alteration of the line vector of the
dislocation in certain circumstances and as a change in the reponse of the dislocation image in
image-contrast experiments.

A suggested model of the ledge-dislocation network is a two dimensional dislocation network.
In order to detach itself from two ledges a boundary dislocation may be forced to adopt a
curvature C as high as 2/L, where L is the width of the broad face of a ledge (i.e. the distance
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between adjacent narrow faces). If the boundary defect is regarded as a flexible line whose
energy per unit length is E, a potential

Ap = EQCJb ~ 2EQ[bl (19)

is required to do this (Bardeen & Herring 1952; Thompson & Balluffi 1962). The threshold
stress, 0, can supply this potential when oy £2 > Au. Here 2 is the atomic volume. This, together
with equation (19), then gives as an estimate of the threshold stress due to the interaction of
glissile i.p.b. superdislocations and ledges:

oo < 2E/bL. (20)

Precipitates lying in the boundary are another source of a threshold stress. An equation
similar to (20) then applies but with L equal to the spacing between the precipitate particles.
Solute-drag may also tend to restrict the movement of the boundary super-dislocations. How-
ever, this will reduce the rate of glide at all stresses, rather than introduce a threshold stress
(Gittus 19740).

105_ T T TTTTTT T ||i||||1 LIS LI L L e N O B O 0 A N O MR
- specimen grain size/pm temp./K 3
- A 2.9 344 B
I~ X 4.3 321 N
- o 3.6 298 7]
. o 4.0 295
L 10 0 40 282 3
z  F ° 4.0 268 3
v L N
2 106: - A - - - - I
K] - threshold stress, o, 3
- T
st v vl vl b e e e bl i
10°° ; 107 10™ 10

relaxation rate, (dP[d¢)[(Ns1)

Ficure 10. Illustrating the ‘sigma-shape’ of the curve relating log strain rate to log stress. Superplastic Pb—Sn
eutectic. The relaxation rate is the rate at which the load fell in a stress relaxation test and must be multiplied
by a factor to arrive at a strain rate. In other plots no effect of grain size upon the value of the threshold stress
was found. Data of Geckinli & Barrett (1976).

Comparison with the results of experiment

Detailed comparison has been made (Gittus 19774) between equation (18), the theoretical
relation for superplastic flow, and the published results of experiments. Good agreement is
generally found and the value of A (0.3d) demanded by the grain-switching model is often
closely approximated. For example Misro & Mukherjee (1974) found that equation (18) fitted
their data for the Al-Zn eutectoid with a constant of proportionality which in the present
terminology implies that A = 0.194: this is close to the value of 0.33d which best fits Ball &
Hutchison’s data (1969) for the same material. Again Alden has reported on the superplastic
flow of a Sn—5 9, Bi alloy (196%7) and in this case the best valueis A = 0.454.
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Magnitude of the threshold stress

A very clear illustration of the threshold effect is contained in figure 10 (Geckinli & Barrett
1976). In this work the specimens were first deformed in tension until the maximum flow stress
was attained. The cross head motion was then stopped and unloading characteristics recorded.
The threshold stress is about 1.3 MPa at room temperature. One possibility, which Geckinli
& Barrett consider, is that the threshold is determined by the work which has to be done to
produce the changes in boundary area which accompany the fluctuating changes in the shape
of the particles. They show that this would yield a threshold stress about an order of magnitude
smaller than the one they measured and Ashby & Verrall (1973) who proposed this source of a
threshold stress confirm that this is a typical discrepancy. If we are correct in ascribing the
threshold stress to a ledge-dislocation interaction, then (equation (20)) in Geckinli & Barrett’s
work the value of L is calculated to have been of the order of 400 nm. This is of the order of
magnitude observed on dislocation-boundaries. That the ledges do impede the movement of
boundary dislocations is established by the electron microscopy reported by Garmong & Rhodes
(1975). These workers calculated that in their NigAl-NigNb eutectic composites the pinning
stress acting to pin thei.p.b. dislocations to the ledges would, theoretically, be #/70. The threshold
stress for dislocation movement is expected to be about A/L times this value, for the applied stress
acts on the entire unpinned length of dislocation (minimum length L) while the pinning stress
only acts on the length of dislocation near to the ledge (height £). So

og & whf70L.

If this equation, derived for a different material, nevertheless holds good for the Pb-Sn
eutectic then the observed value of the threshold stress in that material would imply that the
ledges on the dislocation boundaries are about 100 times as long as they are high. This is in
reasonable accord with experiment.

Activation energies

A change in temperature can alter the proportions of the phases in a superplastic alloy. As the
new structure will not have the same strain rate-stress relation as the old one, the apparent
activation energy determined by a temperature-change experiment can include a spurious
effect due to the structural change. Of work in which an attempt has been made to avoid this
latter pitfall, that of Herriot, Baudelet & Jonas (1977) and of Suery & Baudelet (1975) is of
special interest. These workers found in their studies of the two phase Cu-P alloys that the
activation energy for superplastic flow, calculated with no endeavour to correct for change in
structure, was close to that for grain boundary diffusion in copper. This is the kind of result that
appears to fit in quite well with the present theory. When, however, allowance was made for
changes in structure the activation energy for flow rose to a value quite close to that for volume
self diffusion in copper. On the face of it this would seem then to run contrary to our theory.
However, Perinet (1975) and Bondy, Regnier & Levy (1971) have found that a high value
of the activation energy is characteristic of impurity diffusion at interphase (as opposed to
grain-) boundaries. Thus Perinet found that the activation energy for diffusion in the boundary
between copper and silver was 65kcal mol~* and this is more than twice the grain boundary
activation energy for either of the pure elements by itself. Again a similar finding was reported
for the diffusion of Fe and Ag in the interface between these two metals. Experiments to measure
self-diffusion in i.p.bs have been planned by Chadwick & Gittus (1977) and are now in progress.
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Initial results show that self-diffusion at an i.p.b. has much in common with impurity-diffusion,
being a spectacularly rapid process with an activation energy nearer to that for volume diffusion
than to that for grain boundary diffusion. These findings clearly accord, on the present theory,
with the high value of activation energy for superplastic flow at constant structure found by
Baudelet and his collaborators. Indeed this may be a general feature of superplastic flow in two
phase materials, having passed unnoticed in earlier investigations because care has not always
been taken to compensate for the effect of changing structure when calculating the activation
energy for superplastic flow. When Baudelet omitted this precaution he obtained a spuriously
low activation energy which is, coincidentally it now appears, similar to that for grain boundary
diffusion (as opposed to phase boundary diffusion) in one of the pure components of which his
Cu-P alloy was composed.

THE TRANSITION TO NON-SUPERPLASTIC DEFORMATION

If the strain rate is increased sufficiently, dislocations start to appear in considerable numbers
inside the grains or particles of a superplastic material. It loses its high ductility and the strain
rate varies now with a higher power of the externally applied stress. ‘ Conventional’ dislocation
creep has begun. In recent work a method of deducing the critical stress at which this change
in deformation character will occur has been developed (Gittus 197774). Details are given below.

Thermodynamic considerations

Consider a specimen undergoing dislocation creep at a constant strain-rate, €, above that at
which superplasticity is observed. Characteristically it will, at the outset of the creep process,
contain a random three dimensional dislocation network. With the passage of time the dis-
locations form themselves into cells. Typically the cell diameter and dislocation density both
move towards an equilibrium value during this initial period (McElroy & Szkopiak 1972).
The large extensions which can occur during this steady state strongly suggest that it is a con-
dition of thermodynamic equilibrium, characterized by a minimum free energy.

At this thermodynamic equilibrium:
(8F)py > 0. (21)

Here, after Shewmon (1965), the lower case delta (8) is used to indicate that the free energy is
unchanged or increased for any small (finite) displacement of the system.

Components of the free energy of the specimen

The dislocations which are contained in the creep specimen make an important contribution
to its free energy. That contribution depends on the dislocation density and upon the arrange-
ment of the dislocations characterized by a quantity K. If K = 1 then the dislocations are arranged
in a uniform three dimensional network. If K > 1 then the dislocation arrangement consists of
cells having most of the dislocations in their walls or boundaries. The larger is K, the bigger is
the cell diameter (for a given dislocation density).

Another component of the free energy of the specimen is the elastic plus viscoelastic strain-
energy produced by the externally appplied stress. If this were the only component, then the
lower the applied stress the lower the free energy. So at a fixed strain rate the dislocations would
tend to move into that arrangement which minimizes the stress that the external machine has to
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136 J. H. GITTUS

exert. The condition of thermodynamic equilibrium could then be the condition of minimum
creep-strength. We can show that there is a certain value of K (of order ¢;#) which produces this
minimum creep strength. If we now consider both components of the free energy (that due to
dislocations and that due to elastic-plus-viscoelastic strain) then we can calculate a more exact
estimate of the value of K which minimizes the free energy. It transpires (Gittus 19775) that

dFF  —1(¢é\} 1(6\% )

K= (E) K3 +/—; (T?) (—2K-3+32K3 + 3;C"cEK5) (K~2+ J5c2KY). (22)
Here B =¢;D,b[(pu?T), (23)

, C" = ((ulng) = 1)[K2, (24)
and gy is the relaxed modulus.

1 1 1 1 L
—2 —1 0
g ¢
0.001 0.01 . 0.1 1
i

—3

Ficure 11. Theoretical value of K as a function of ¢; for various values of C’. Here C’K? = (pp— puy) [ty where p
and py are the shear modulus and the relaxed modulus respectively. Theoretically 0 < C” < 0.05. In practice
its value is usually less than 0.005.

The condition set by equation (21) is met if dF/dK = 0 and d2F/dK? = positive. Equation (22)
with dF/dK = 0 gives

¢ = {—b+ (b%—4ac)t}/2q, (25)
where a = 1072K"+ 535 C'K?;
b = EC'K3+45K; (26)
¢ =—K-3-2K-5,

Differentiating equation (22) a second time we find that the condition d2F/dK? = positive is met.
So equations (25) and (26) correspond to a state of thermodynamic equilibrium. From them
the theoretical value of K may be calculated.

Theoretical relation between K, C' and c;

In figure 11 equation (25) has been used to provide the theoretical relation between K and ¢
for " =0, 0.005 and 0.05. €' = 0.05 is the maximum theoretical value of this parameter,
corresponding to the case in which all of the dislocations in the cell walls bow out reversibly
under stress, contributing to the viscoelastic strain (Friedel 1964). In practice the measured
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ratios of relaxed to unrelaxed modulus correspond to C’-values of order 0.005 (i.e. only about
one tenth of the dislocations bow in this manner).

For materials in use at the temperatures where dislocation-creep is the dominant deformation
mechanism we generally have 0.1 > ¢; > 0.001 and so theoretically 20 > K > 5: the values of
K that have been measured experimentally do in fact lie generally in this range (Gittus 1975 ).

TABLE 1. THEORETICAL RELATION BETWEEN THE VALUE OF K AND
THOSE OF ¢; AND K’ FOR VARIOUS VALUES OF C’

c’ K ¢ ¢; (approx.) K’
0 1 3.61 3.16 1.65
5 5.50x 102 5.62x 102 3.36

13 5.11x 103 © b5.13x1072 7.30

20 1.75x 102 1.74x 103 10.80

0.001 10 9.42 x 10-3 9.04 x 102 5.44
0.005 1 3.60 9.12 1.65
5 5.20x 102 7.24x 102 3.11

13 3.80%x 102 4.17x 10-2 4.48

20 1.25x 102 1.15% 103 6.60

0.05 1 3.49 5.13 1.61
5 3.87x 102 4.07x 102 2.17

13 2.37x 1072 2.34x 1073 2.36

20 6.87x 104 6.46 x 10— 2.51

Note: if C’ = 0 then K & 1.58¢7%4; K’ = 1+ K[2.

Approximations to K

For finite values of C’ and for K > 5, equation (25) reduces to the following approximation:

K ~[0.03C"]# ;3. (27)
For C' = 0 and for K > 1 the following alternative approximation to equation (25) is valid:
K ~ 1.58¢704, (28)

To illustrate the range of validity of these approximations, equations (27) and (28) have been
used to produce estimates of ¢; (¢; (approx.)) for selected values of K and C’. The results are
compared in table 1 with the exact values of ¢; derived from the full solution of equation (25).
Only in the case of K = 1 for ' = 0.005 and 0.05 are the approximations poor: for most pur-
poses, the approximations are acceptable and lead to some simplification of the creep equation.

Theoretical relation between cell diameter and stress

It has been shown (Gittus 19776) that, according to the present theory, the following equation
should relate the stress causing creep to the diameter of the cells, L’:

v o = (ubIL') (1 + 48 K9). (29)
Experiments indicate (Staker & Holt 1972) that

o~ Kub/L, (30)
with K’ ~ 10. (31)

A theoretical value of K’ can be obtained by solving equation (29) for K’ using the values of K
and ¢; from table 1. This has been done and the theoretical values of K’ so obtained are there
tabulated. The theoretical K’ values are seen to be of the expected magnitude.
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Deformation maps for the transition

We can now begin to see what happens as the stress is reduced in a two phase material under-
going dislocation creep. In each of the particles of the two phases there is a network of dislocations
arranged in cells. As the stress is reduced, the equilibrium cell diameter, L, increases (equation
(29) and table 1 with equation (30)). We can see that at a low enough value of the stress the cell
diameter will become equal to the particle size and at that point the whole of the strain must
be accounted for by superplastic flow. At some higher stress the strain due to superplastic de-
formation mechanisms will be equal to that due to dislocation creep. This will occur when the
cell boundary area is about equal to the interphase area, or more precisely when

L'~ dJ3. (32)
So from equations (30) and (32): dlb = 3K’ (o/p)~. (33)
o[MPa
107 10 10

dislocation—creep

N
108+ Nabarro—Herring o

djb

104} Coble superplasticity

{107

| 1
107° S0
ol

Ficure 12. Deformation mechanism map prepared by Mohamed & Langdon (19%76) for Zn-229, Al.
Theoretical line for the boundary between superplasticity and dislocation-creep.

The validity of equation (33) can be assessed by means of deformation maps prepared
by Mohamed & Langdon (1976) for Zn-22 %, Al and Pb-62 %, Sn. These are reproduced here
as figures 12 and 13 and on them have been drawn the theoretical lines corresponding to equation
(33). The appropriate values of K’ were calculated using table 1 and were as follows:

Zn-229 Al, K’ = 3.78; (34)
Pb-62%Sn, K = 2.31. (35)

The theoretical lines according to equation (33) with the values given in equations (34) and
(35) have been plotted in figures 12 and 13 and are seen to give a good indication of the boundary
where superplastic deformation produces the same contribution to the flow rate as does dis-
location creep.
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Source of the high ductility in superplastic flow

It has long been difficult to explain just why the ductility in the superplastic régime should
be so high. Certainly if m = 1 then one would expect quasi-infinite ductility (Newtonian viscous
flow) since it is easy to show that in such a case a ‘neck’ will not propagate. A neck is a local
region of reduced diameter in a tensile specimen. It forms as a result of some local inhomogeneity
of structure or temperature. If thinning occurs faster at the neck than elsewhere, the specimen
will eventually neck-down to a point and fracture. This is what happens in ordinary creep.
It does not happen (and is not expected) if m = 1. The anomaly has been that necks do not
propagate in superplastic materials where m can be as low as 0.3 and is theoretically (we have
shown) equal to 0.5.

o[/MPa
o o
108 10 10 10 1
dislocation—creep 110

" Nabarro—Herring

106 b=

dfb
dlem

107

4l
10 superplasticity

Coble 4107
1078 107

olu

Ficure 13. Deformation mechanism map prepared by Mohamed & Langdon (1976) for Pb~629, Sn.
Theoretical line for the boundary between superplasticity and dislocation-creep.

An explanation can now be offered. It is simply that when the cell-diameter becomes equal
to the particle (grain) size there is a_further reduction in the free energy of the specimen. This is partly due
to the low Burgers vector values of i.p.b. dislocations and partly because the dislocation-pileups
on the i.p.bs, by concentrating the stress causing climb, reduce the stress needed to cause a given
strain rate. We have shown that cells adopt a size which minimizes free energy during ordinary
dislocation creep. When that size is equal to the particle (grain) size there is a further step-
reductionin free energy. Ifaneck does try to propagate in the superplastic state then the associated
local increase in stress, by reducing the equilibrium cell size below the particle size, produces a
large increase in the free energy of the system. So neck propagation is strongly resisted.

DISLOCATION CREEP

Equation (29) is an approximation, taken from a more exact analysis of dislocation creep
(Gittus 19%76) which has led to the following equation:

o=0,+F (36)
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140 J. H. GITTUS
where o, = (é/B)} K> (37)
F" = (kT[b%') arsinh (o, b%; K820k T). (38)

Here /' is the jog-separation. The equation agrees quantitatively with creep data.

The sensitivity of the creep rate to a change in the externally applied stress, predicted by these
equations, falls as the stress moves towards zero (figure 14). So (from table 2) n = dlgé/dlgo
for gold (at a temperature T equal to half the absolute temperature of melting) is predicted to
fall from a value of about 5 toward its low-stress asymptote of 3 as the applied stress falls from
1073 to 10~ . As K (the ratio of the cell size to the dislocation-spacing) becomes large the
equations reduce to one found (by Garofalo) to give a good fit to creep data over an extended
range of temperatures and stresses. Most of the temperature dependence arises from that of the
volume self-diffusion coeflicient, D,; again this is in general accord with the results of experiment.
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Ficure 14. Relation between F’b2[kT (proportional to stress, o, at high
stress) and the value of » in the approximation € oc o,

TaBLE 2. COMPARISON OF THE ACTUAL AND THEORETICAL VALUES OF
STRESS WHICH PRODUCE A GIVEN CREEP-RATE IN GOLD AT Tm/ 2.

Predicted and actual values of n; theoretical value used for K.

dlné/dlno =n

actual, experimentally - \
determined stress, o theoretical stress theoretical experimental
10-34 0.96 x 10-3 5.0 5.5
10~ 0.37x 104 p 3.0 5.5

It seems that during dislocation creep in a two phase material the particles of the two phases
deform like the specimen itself and so a simple law of mixtures, based on the deformability of
the phases in isolation, often yields a good account of the creep rate of the composite.

DEFORMATION DURING TRANSFORMATION FROM ONE PHASE TO ANOTHER

An additional mechanism of deformation can operate in a two phase material if it is subjected
to stress while in the course of actually transforming from one phase to another. Imagine that
the transformation from beta to alpha occurs by the formation, in a matrix of beta, of a small
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region of alpha and let there be an increase in volume due to the phase change. Then trans-
formation will cause an internal stress (/) and it will also deform the material (at rate €; say).
We can use these values to form an approximate estimate of the constant Ay, in the Levy—Mises
stress—strain increment relations:

bij = AL 0y (39)
ie. AL~ €L (40)

Equation (39) with A, defined by equation (40) then becomes the creep equation for a material
which is transforming. The condition for the applicability of equation (40) is seen to be that the
second invariant of the strain tensor is not significantly altered by the external stress system. Or
more simply:

o<l (41)
Roberts & Cottrell (1958) were the first to suggest this type of creep and a more exact derivation
of the equation was given by Anderson & Bishop (1962).

1046,/b

Ficure 15. Dislocation-flux (€;/6) measurement for copper against homologous temperature
(T|T,,) for a displacement-rate (¢) of 1.5 x 10~2 atom per lattice-site per second.

There is good support for the equation (Gittus 19755). For example, it represents quite well
creep in ferrous alloys during transformation and the creep of uranium during transformation.
Indirect evidence indicates that the effect is also present during the transformation of dilute
alloys of zirconium. In order to produce significant strains it is necessary to cycle the material
through the phase change. If this is not done then creep by this mechanism ceases as soon as the
transformation is complete. An exception is provided by the analogous case of irradiation creep
in cubic materials such as stainless steels and nickel based alloys. Here atoms which have been
displaced from their lattice sites by bombardment tend to drift towards edge dislocations, arriving
there in somewhat greater numbers than do the vacant lattice sites from which the atoms were
displaced. The surplus vacancies then form internal voids and as a result the material swells.

The process is akin to transformation in the sense that atoms are continually crystallizing onto
dislocations. Unlike a normal transformation, however, it continues as long as irradiation con-
tinues and so the associated irradiation creep should continue also. Its magnitude should be
given by equations (39) and (40) and as an estimate of the value of ¢; we can use the experi-
mentally measured value of the swelling rate, §. Alternatively we can measure the rate of climb
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142 J. H. GITTUS

of the dislocations by time lapse photography in the million volt electron microscope (Gittus
1975b), a technique which is particularly attractive since we can arrange matters so that some
of the electrons displace the atoms whilst others form the magnified image. Both approaches
have been used and they provide good confirmation of equations (39) and (40). Thus figure 15
shows the value of é;/b measured for copper in the electron microscope and figure 16 gives values
for the internal stresses deduced from measurement of dislocation-bow in similar experiments.
When these results are used in equations (39) and (40), they lead to predicted creep rates which
are in the order of magnitude observed in in-pile creep experiments. Again from the results of
such creep experiments and the rate of swelling (which occurred simultaneously) it is possible,
via the theoretical equations, to calculate the internal stress. This has been done for two sets of
creep data and (Gittus 19755) the estimates so produced are close to the irradiated yield point
of the material: arguably a reasonable estimate of the internal stress which operated in-pile.

El/
( -
1y o
e
0 —n—--P |
A —--30"""> 40

time/min

.__1— N

Ficurke 16. Internal stress (I) divided by the Young modulus (¥) deduced from
measurements of dislocation bow at various instants.

Discussion

In this paper we have drawn together the threads of contemporary understanding about the
deformation properties of two phase materials. We see that these differ from single phase materials
in several, on the face of it unexpected, ways.

First, there are the dispersion strengthened materials whose characteristic is that a tiny
proportion of dispersed particles can produce an enormous reduction in deformability. The
effect is explained by the way in which dislocations have to behave in order to circumvent the
particles. Generally, to produce a significant strain rate, the dislocations must increase in length
in order to get past the particles. The work which is needed to produce this increase in length is
supplied by the external machine that produces the deformation. The smaller the strain (move-
ment of the externally applied load) produced as a result of each bypassing event, the larger the
external stress must be if it is to supply the work needed to increase the line length of the dis-
location and thus permit it to bypass the particle.
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'The next class of materials which we have considered contain almost equal amounts of the
two phases. They are the eutectics and eutectoids and they exhibit superplasticity under suitable
conditions. We show that this is a process in which the particles of the two phases slide over one
another like grains of sand in an hour-glass. Sliding is provisionally attributed to the glide of
interphase boundary superdislocations and an equation which fits the available data and which
is based on an analysis of this sliding process is presented. It contains a threshold stress which,
it is shown, can reasonably be identified with the stress needed to overcome the friction between
1.p.b. superdislocations and ledges in the interphase boundary. The high value of the activation
energy for superplastic flow in two phase materials is seen to be in accord with recent measure-
ments of i.p.b. self-diffusion coefficients.

Fi1cure 17, Specimen of the zirconium-tin alloy Zircaloy-2, illustrating the weakness and ductility which char-
acterize superplasticity. The tubular specimen was heated by passage of a current of electricity: the ends were
maintained colder than the centre by clamping them in water-cooled copper grips. Gas pressure was used to
inflate the tube. The end regions were in the alpha-plus-beta phase field and swelled superplastically. The
centre was in the beta phase-field and swelled by dislocation-creep: although much hotter than the ends it
was evidently stronger (a consequence of the different deformation mechanisms).

If the strain rate is increased, then eventually within the grains (particles) there appears a
network of dislocations arranged in cell-boundaries. The equation for creep in such a structure
is developed. It invokes the movement of dislocations across the cells and so the cells shear during
this type of creep (‘dislocation creep’) and the strain of the specimen (an aggregate of cells)
equals that of an individual cell. In contrast, the dislocations which cause superplastic deforma-
tion were effectively trapped in the particle boundaries. So their glide gives rise, not to shear of
the particle but to sliding on its boundary. It is this difference which accounts for the change
from heterogeneous to homogeneous flow as we go from superplastic flow (at low strain rates)
to dislocation creep (at higher strain rates).

The size of the cells increases, theoretically, as the applied stress is diminished. Experiments
have confirmed this and agree numerically with the theory. The cell size is that which minimizes
the free energy of the creeping specimen, by reducing both the external stress (needed to maintain
a given creep rate) and the elastic energy of the dislocations themselves. The specimen is in a
state of thermodynamic equilibrium and is resistant to perturbations such as those which lead
to neck-propagation and fracture.

An even deeper minimum in the free energy occurs when the cell size becomes equal to the
particle (grain) size and it is this which accounts for superplasticity — the property of extending
by a factor of 2-20 without fracture (figure 17).

Finally we consider what happens if, during transformation from one phase to another, a
material is subject to stress. This, it is shown, gives rise to an additional source of deformation.
What happens is that the external stress perturbs slightly the conditions (high internal stress
and internal deformation) set up by the transformation, leading to a component of external
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144 J. H. GITTUS

strain. The ratio of external stress to external strain rate is theoretically equal to the ratio of
internal stress to internal strain rate (for small enough external stresses). Again it seems that
experiments support the theory. In particular, when transformation is simulated by using irra-
diation to generate a constant super-saturation of self interstitials (which continually crystallize
out on dislocations) then irradiation creep occurs at the theoretical rate and can be tied to
measurements of transformation rate and internal stress made during irradiation in the high
voltage microscope.

I am indebted to the United Kingdom Atomic Energy Authority for permission to publish
this paper.
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Discussion

Avran H. Cooxk, F.R.S. (Department of Physics, Cavendish Laboratory, Madingley Road, Cambridge 0B3
0HE). It is very likely that the materials of the mantle of the Earth form not just two-phase but
multiphase systems and so the ideas of strain hardening and superplasticity may be very important
especially as the existence of a threshold strength could have significant consequences for our
ideas of the topology of convection and of the conditions for its onset. Can Dr Gittus say how
the phenomena scale in time and length? Will there still be a threshold strength when deforma-
tions extend over many millions of years and hundreds of kilometres?

A
lg T
-rat

(creep-rate) B

C/ D

o lg (stress) —=

Ficure 18. Plot of creep rate against stress illustrating the presence of a pseudothreshold stress .

J. Girrus. The situation is best understood by reference to figure 18 which is a plot of strain
rate against stress on logarithmic axes. Line 4BD corresponds to the case in which a threshold
stress, o, exists. Line 4 BC'is the real case to which ABD is a good approximation for ‘laboratory’
timescales. However, when deformations extend over many millions of years and hundreds of
kilometres the approximation is no longer adequate and portion BC shows that below the
‘threshold stress’ o, there will still be slow but finite strain rates leading to finite displacements
on geological timescales.

J. P. PorrieRr (Saclay, France). The equation Dr Gittus gives for superplastic deformation of two
phase materials is adapted from the Ashby—Verrall equation for single phase materials, mainly
by introducing a diffusion coefficient for heterophase boundary diffusion. Now, in the interface
between A and B, we may define two diffusion coefficients for the diffusion of species A or B
respectively. Which of these, or which combination of these, should be used?

J. Girrus. The derivation is an adaptation of Ball & Hutchison’s (1969) model. It uses the
Raschinger grain-switching process which was also used by Ashby & Verrall in their (somewhat
different) model.

In cases (thereis at the moment only one such case) where both diffusion coefficients are known,
their average is used in the equation.

10 Vol. 288. A.
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S. A. F. MurreLL (Department of Geology, University College London, Gower Street, London, WC1E
6BT). Professor Weertman suggested that isostatic adjustment (due for example to the melting
of an ice cap) takes place by transient creep processes, so that the mantle viscosity estimated
from such data is a lower limit to the true viscosity. I have discussed the rdle of transient creep
in lithosphere deformation in a recent paper (Murrell 1976). However, one of the problems in
this field is that there is no recent general theory which relates transient creep to steady state
creep, or defines the important parameters in transient creep. In my work I have used an early
theory due to Mott (1953), but have also developed a new theory of transient creep based on
Friedel’s (1964) dislocation network growth theory (Murrell & Chakravarty 1973). Would
Professor Weertman, Professor Ashby or Dr Gittus care to comment on the theory of transient
creep?
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J. GrrTus. A recent general theory which relates transient creep to steady state creep has been
developed by me and is described in detail in my book (Gittus 19755). See particularly § 3.3
on page 65 and equation 3.40 of that book.

J. WEERTMAN. Obviously the transient creep field has not been developed, both experimentally
and theoretically, to the extent that the steady-state creep field has been. Transient creep is
much more complicated than steady-state creep because the deformational flow history of a
sample can be very important. That is, if a sample is suddenly stressed its transient creep response
will be different if the sample is well annealed or if the sample previously had undergone large
plastic flow. Laboratory and theoretical investigations on transient creep phenomena that have
been made generally are for the case of stresses suddenly applied to well annealed material.
However, in glacial rebound, stress is ‘suddenly’ applied to mantle rock that presumably has
been deformed to large plastic strains.
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IGURE 17. Specimen of the zirconium-tin alloy Zircaloy-2, illustrating the weakness and ductility which char-
acterize superplasticity. The tubular specimen was heated by passage of a current of electricity: the ends were
maintained colder than the centre by clamping them 1n water-cooled copper grips. Gas pressure was used to
inflate the tube. The end regions were in the alpha-plus-beta phase field and swelled superplastically. The
centre was in the beta phase-field and swelled by dislocation-creep: although much hotter than the ends it
was evidently stronger (a consequence of the different deformation mechanisms).
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